Dictionary > Transfer ribonucleic acid

Transfer ribonucleic acid

Definition

noun
plural: transfer ribonucleic acids
trans•fer ri•bo•nu•cle•ic ac•id, ˈtɹænsfɝ raɪboʊnjuːkliːɪk ˈæsɪd
A ribonucleic acid RNA involved in protein synthesis, particularly transporting specific amino acid to the ribosome to be added onto the growing polypeptide chain

Details

Overview

Ribonucleic acid (RNA) is a nucleic acid, which similar to deoxyribonucleic acid (DNA) is made up of linear chains of monomeric nucleotides. Each nucleotide component, in turn, is made up of phosphoric acid, sugar, and nitrogenous base. RNA differs from DNA in being generally single-stranded and with a ribose sugar component as opposed to DNA’s deoxyribose sugar. Another marked difference is the uracil of RNA in place of thymine in DNA. Thus, adenine complementary base pairs with uracil in RNAs. One of the main functions of RNA is for protein synthesis. There are three major types of RNA involved in this process: (1) messenger RNA (mRNA), (2) transfer RNA (tRNA), and (3) ribosomal RNA (rRNA). During protein synthesis, transfer RNA transports specific amino acid to the ribosome to be added onto the growing polypeptide chain.

Structure

Transfer ribonucleic acid (tRNA) is comprised typically of 76 to 90 nucleotides. Its molecular weight is about 25,000 to 30,000 Daltons. Apart from the usual nucleotides such as adenine, cytosine, guanine, and uracil, it may also contain unusual nucleotides such as pseudouracil, inosine, and dihydroxyuridine”.
The primary structure of tRNA is a molecule that is comprised of particular sequence of nucleotides. It occurs as a succession of nucleotides in precise order presented in 5′ end to the 3′ end. The secondary structure of tRNA is its cloverleaf structure, a 2D configuration formed from hydrogen bonds. The tertiary structure of tRNA is the L-shaped 3D structure formed from coaxial stacking of the helices. Hydrogen bonds occur between certain nitrogenous bases, between nitrogenous bases and ribose-phosphate backbone, and between ribose-phosphate backbones. The 3D structure of tRNA is comprised of the following:

tRNA componentsFeaturesFunction
5′ terminal phosphate group The phosphate group attached to the 5′-terminal, i.e. at the C5 of ribose at its terminusThe presence of 5′-phosphate group allows the ligation of two nucleotides
Acceptor stemIt refers to the base pairing between the nucleotides (about seven to nine base pairs) of the 5′-terminal and of the 3′-terminal. It also includes the CCA tail, which simply refers to the cytosine-cytosine-adenine sequence at the 3′-end. This is where the amino acid docks. The –COOH of the amino acid covalently attaches to the 3′-OH of the adenine in the CCA tail (forming amino acyl tRNA).It serves as the site of attachment (esterification) of amino acids to tRNA, particularly covalently bonding with the 3′-OH group on the CCA tail. The CCA tail is also essential for enzymes to recognize tRNA. For instance, ribonuclease P (the enzyme that removes extra nucleotides from 5′-terminal) recognizes the CCA sequence (as well as the nucleotides within the TY loop) of the tRNA.1
Variable loopThe part of the tRNA between the anticodon loop and TΨU, and consists of nucleotides between 3 and 21, which depends on the amino acid that the tRNA encodesWhen present, it provides stability to the tRNA. It may also be used during the recognition of the aminoacyl tRNA synthetase for tRNA. The presence of variable loop may be used to classify tRNAs into class 1 (lacking variable loop) and class 2” (variable loop, present).
D armIt is the part of the tRNA comprised of stem and loop, where the stem contains about four to six base pairs, and then, it ends in a loop that often contains dihydrouridineIt helps stabilize tRNA structure and serves as a recognition site for specific enzyme aminoacyl-tRNA synthetase.
Anticodon armIt is a part of the tRNA comprised of stem and loop, where the stem contains five base pairs whereas the loop contains seven unpaired nucleotides. Of these seven, the middle three serves as the anticodon.The anticodon in the loop recognizes and eventually binds with the codon of the messenger RNA.
T armIt is a part of the tRNA comprised of stem and loop, where the stem contains five base pairs whereas the loop contains seven unpaired base pairs. Of the seven base pairs in the loop, three of them are TΨC (i.e. thymine, psuedouridine, and cytosine)The loop contains the ribosome recognition site

Biological function

tRNA is a ribonucleic acid that picks up the specific amino acid from the cytoplasm and then transports it to the ribosome to be added onto the growing chain of amino acid. In essence, it has two major regions important in protein synthesis, i.e. one that connects with the codon of the mRNA via tRNA anticodon and the other that serves as attachment site for specific amino acid.

Common biological reactions

Common biological reactions

In prokaryotes, tRNAs are synthesized in the cytoplasm whereas in eukaryotes, they are synthesized inside the nucleus. RNA polymerase III facilitates the transcription of pre-tRNAs as encoded by the tRNA genes. Transcription is brought into a halt when there are four or more thymidines. The pre-tRNAs will then undergo maturation. They become mature functional tRNAs by RNA folding and trimming (i.e. removing the introns through tRNA-splicing endonucleases). In bacteria, introns are removed via self-splicing. After trimming, the enzyme multifunctional tRNA ligase joins the spliced tRNAs back. Prior to transport to the cytoplasm, tRNAs are aminoacylated. Los1/Xpo-t facilitates the transport of mature tRNAs into the cytoplasm.

Common biological reactions

Protein synthesis is comprised of two processes, i.e. transcription and translation. Transcription is the process in which messenger RNA (mRNA) is produced based on a DNA template. The mRNA moves from the nucleus to the cytoplasm to reach the site of protein synthesis, the ribosomes. In the ribosome, translation occurs. It is when the amino acids transported by the tRNAs will be joined together in a particular order as specified by the genetic code as copied by the mRNA from a DNA segment.
The ribosome is a cytoplasmic structure that serves as the site of protein synthesis. It has three binding sites: A, P, and E sites. The A site binds to aminoacyl-tRNA (a tRNA with an amino acid). The P site is the site in a ribosome occupied by tRNA carrying the growing peptide chain (i.e. peptidyl tRNA). The E site is the site for decylated tRNA on transit out from the ribosome.2 Using messenger RNA as a template, the ribosome traverses each codon and pair it with a specific amino acid attached to a transfer RNA.

Supplementary

Abbreviation(s)

  • transfer RNA
  • tRNA

Synonym(s)

  • soluble ribonucleic acid (RNA)
  • acceptor ribonucleic acid (RNA)
  • Derived term(s)

    • Cysteinyl-trna synthetase
    • Glycine-trna ligase
    • Initiation trna
    • Queuine trna-ribosyltransferase
    • Starter trna
    • Suppressor trna
    • Valine-trna ligase

    Further reading

    See also

    Reference

    1. Acceptor Stem (Molecular Biology). (2019). Retrieved March 20, 2019, from ://what-when-how.com/molecular-biology/acceptor-stem-molecular-biology/ Link
    2. A-site, P-site and E-site. Retrieved from ://www.nobelprize.org/educational/medicine/dna/a/translation/epa.html Link

    © Biology Online. Content provided and moderated by Biology Online Editors



    You will also like...

    Protein (illustration)
    Protein Variety

    The sequence of amino acids determines the type of protein. Protein is synthesized according to the sequence of nucleoti..

    Hormone Production
    Hormone Production

    Hormones are chemical messengers produced by specialized glands and they were produced by switching on the genes designe..

    river
    Running Water Freshwater Communities

    This tutorial introduces flowing water communities, which bring new and dithering factors into the equation for possible..

    Body temperature regulation by the hypothalamus
    Temperature Regulation in Animals

    This tutorial elucidates body temperature regulation. Know the details here to learn how the body sets the body temperat..

    Community Patterns

    Learn about community patterns and the ecological factors influencing these patterns. Revisit some of the ecosystems you..

    kinesin motor proteins transporting molecules across microtubules
    Movement of Molecules Across Cell Membranes

    Molecules move within the cell or from one cell to another through different strategies. Transport may be in the form of..

    Related Articles...

    No related articles found

    See all Related Topics