Biology Tutorials > The Human Physiology > Control of Body Movement

Control of Body Movement

Control of body movement

Neural activities are required to perform a movement.

Motor Control Hierarchy

A motor program is the pattern of neural activities required to perform a movement is created and transmitted via neurons that are organized in a hierarchical manner. The program is continuously updated. Learning and skill can develop if the program is repeated frequently enough.

Voluntary and Involuntary Actions

Voluntary movement is accompanied by a conscious awareness of the action while the involuntary movement is not. All motor behaviors lie in a continuum and have both components in different degrees.

Local Control of Motor Neurons

Important in keeping the motor program updated by gathering information from local levels through afferent fibers.

Interneurons

Interneurons are synapses that integrate inputs from both higher centers and peripheral receptors.

Local Afferent Input

Afferent inputs to local interneurons bring information about the tension of muscles, movement of joints, etc. that in turn influence movements.

Length-Monitoring Systems

Changes in muscle length and rate of these changes are monitored by stretch receptors located within structures called muscle spindles that are present in modified muscle fibers called intrafusal fibers. (Rest of the fibers responsible for the force of a muscle are called extrafusal fibers.) Stretching a muscle fires these receptors while contraction of the muscle slows the firing of these receptors.

Afferent fibers from these receptors can take 4 pathways:

  1. Some fibers go back directly to motor neurons of the same muscle without the interposition of any interneurons and these arcs are called monosynaptic stretch reflex arcs.
  2. Some fibers end on interneurons that inhibit the antagonistic muscles and this is called reciprocal innervation.
  3. Some fibers activate motor neurons of synergistic muscles.
  4. Some fibers continue to the brainstem.

Alpha-Gamma Coactivation

The larger motor neurons that control the extrafusal fibers are called alpha motor neurons and the smaller- motor neurons that control the intrafusal fibers are called gamma motor neurons. These neurons are excited or coactivated at the same time to get continuous information about muscle length.

Tension-Monitoring Systems

Receptors located in the tendons called Golgi tendon organs monitor the tension on a muscle.

Withdrawal Reflex

If a stimulus activates flexor motor neurons and inhibits extensor motor neurons, moving the body away from the stimulus, it is called a withdrawal reflex. The effect is produced on the same side of the body where the stimulus arose (ipsilateral side) and an opposite effect may be produced on the other side (contralateral side) to compensate for any lost support due to the withdrawal. This is a crossed-extensor reflex.

Muscle Tone

Passive resistance of skeletal muscle to stretch due to some degree of alpha motor neuron activity and the viscoelastic properties of the muscle. Abnormally 1ight muscle tone called hypertonia can result in brief spasms, prolonged cramps or constant rigidity.

Maintenance of Upright Posture and Balance

Coordinated muscular activities support the skeleton and the upright posture. The afferent pathways of postural reflexes come from: (1) the eyes, (2) the vestibular apparatus (3) the somatic receptors. There are brain centers that coordinate this information and compare it with an internal representation of the body’s geometry. The efferent pathways are the alpha motor neurons to the skeletal muscles.

Walking

Walking requires the coordination of many muscles. Extensor muscles are activated on one side to support the body’s weight and the contralateral extensors are inhibited by reciprocal inhibition to allow the nonsupporting limb to flex and swing forward.

 

Credit: Sportology

 

Quiz

Select the best answer.

1. Voluntary movement is accompanied by a conscious awareness of the action.

2. Changes in muscle length and rate of these changes are monitored by stretch receptors located within muscle spindles.

3. Gamma motor neurons control the intrafusal fibers.

4. Golgi tendon organs are tension-monitoring system located in the tendon.

5. Withdrawal reflex is a reflex that causes the body to move towards the stimulus.

Send Your Results (Optional)

Your Name
To Email
Biology Tutorials > The Human Physiology > Control of Body Movement

You will also like...

Developmental Biology
Developmental Biology

Developmental biology is a biological science that is primarily concerned with how a living thing grows and attains matu..

Lake Wakatipu, New Zealand
New Zealand’s Unique Geographical History

Explore why New Zealand has such unique flora and fauna, and learn why long periods of geographical isolation. This less..

genes controlling growth and development
Control of Growth & Development

Control of Growth & Development tutorials look at how the genetic makeup determines the biological processes on a da..

DNA molecule
Genetic Control – On and Off Genes

Genes are the blueprint of our bodies, a blueprint that creates a variety of proteins essential to any organism's surviv..

Types and Causes of Brain Damage
Types and Causes of Brain Damage

This tutorial describes the different types and causes of brain damage. Find out how genetics, physical injury, lack of ..

A sperm cell fertilizing an ovum
Human Reproduction and Fertilization

For human species to obviate extinction, reproductive mature adults should be producing viable offspring in order to con..